Ссылки для упрощенного доступа

Кто живет на Земле, кроме животных и растений


Антони ван Левенгук (1632 —1723), голландский ученый, изобретатель микроскопа. Его открытие положило начало описанию бактерий
Антони ван Левенгук (1632 —1723), голландский ученый, изобретатель микроскопа. Его открытие положило начало описанию бактерий

Современная классификация земных организмов значительно отличается от привычного разделения на животных и растений, которым пользовалось человечество сотни лет. Ученые стали описывать органический мир с помощью сложных систем, и эти системы постепенно усложняются. О классификации органического мира рассказывает кандидат биологических наук, заместитель декана биологического факультета МГУ Галина Белякова.


– Со времен Аристотеля люди делили все живые организмы традиционно на животных и растения, и такая система органического мира держалась довольно долго, но потом все постепенно стало усложняться. Довольно долго была система из пяти царств – это бактерии, простейшие одноклеточные, животные, растения, грибы. Но в настоящее время все стало еще сложнее. С чем связаны изменения, которые происходят в системе описания органического мира?


– Действительно, очень долго держалась точка зрения, что все живые организмы надо разделить на животных и растения. И в основу такого подхода был положен принцип отличия животных и растений. Речь шла о тех многоклеточных организмах, которые были доступны обывателю в быту и ученым. Пока не было микроскопа, видели только внешние признаки организмов. И животные отличались от растений, во-первых, активным образом жизни, а растения вели прикрепленный образ жизни, и способами поглощения питательных веществ. И вот эта точка зрения господствовала значительно дольше, чем система органического мира, состоящего из пяти царств. Она держалась до того момента, когда Левенгук (Antoni van Leeuwenhoek) первым увидел бактерии, и первым увидел такой удивительный организм, как вольвокс (Volvox).


Дальнейшее развитие микроскопии привело к тому, что стало доступен тот мир, который раньше не был знаком. Вольвокс, который наблюдал Левенгук в капле воды, как бы соединяет в себе признаки как животного, так и растения. Он подвижен, у него есть хлоропласты, он фотосинтезирует, а не глотает пищу. Тогда куда его нужно было относить?


Традиционно в наших школьных учебниках, если открыть учебник зоологии, то там есть простейшие, есть жгутиконосцы, есть окрашенные жгутиконосцы и там вы найдете вольвокс. Откройте учебник ботаники, вы найдете группу низших растений, найдете водоросли и тоже найдете вольвокс. И вот эта ситуация привела к тому, что скопилось большое количество таких одноклеточных организмов, которым не знали, где их место в систематике.


Геккель в конце XIX века предложил выделить новое царство протист Protist, куда отнес одноклеточные организмы.


Наверное, еще полвека прошло прежде, чем развитие биологических наук привело к сознанию того, что есть два типа клеток - это прокариотные (безъядерные) и эукариотные (клетки с ядром). В 1938 году было предложено еще одно новое четвертое тогда царство, куда отнесли все прокариотные организмы – бактерии.


Получилось три эукариотных царства – протисты, животные и растения. Это царство протист напоминало такую сборную солянку, куда относили то, что не подходило ни к растениям, ни животным. И туда же отнесли грибы. Но что такое грибы? Дальше было выделено самостоятельное царство грибов из царства протистов. Потому что отнесение к низшим растениям, неоправданно – у грибов нет хлоропластов, они не фотосинтезируют, у них хитиновые клеточные стенки. То есть это такие организмы, которые как бы соединяют в себе свойства растительной и животной клетки. Поэтому было создано царство такое, которое назвали грибы.


До середины 1970-ых годов была система четырех эукариотных царств и одного царства прокариотов. А дальше американский исследователь Кард Вазё (Carl Woese) открыл археи (Archaea).


Археи - организмы, которые имеют прокариотическое строение клетки. Но как оказалось, очень далеко отстоят от настоящих бактерий. Причем все системы, которые были, они основывались на типических признаках – морфология, физиология, биохимия организма.


Карл Вёзе предложил использовать признаки, связанные с анализом последовательности нуклеотида генов и предложили этот ген ДНК для прокариотических клеток, который котирует РНК, входящую в состав рибосом.


Рибосомы – это структуры, которые есть во всех клетках, на них идет синтез белка. И оказалось, что империя прокариот неоднородна. И тогда была выделена и предложена система не пяти царств, а трех доменов. Вёзе предложил использовать домены - это на сегодняшний день самая высокая иерархическая категория и вот такие три домена: бактерии, археи и эукариотные организмы. А уже внутри этих доменов идет деление на империи, империи делятся на царства, царства на отделы ну и так далее.


– Понятно, что никакой ученый не может запомнить все миллионы описанных видов, их надо по каким-то полочкам разложить. Но это делается только для удобства или отражает какую-то объективную реальность?


– Систематика, как наука о видовом разнообразии организмов, занимается не только тем, систематизированием того, что уже накоплено, но она отражает и уровень развития биологии. Она позволяет делать такие обобщения, которые дают возможность продвижения в биологии, причем в разных направлениях биологических наук, которые на первый взгляд как бы не связаны обывателем с систематикой. Это и цитология, и биохимия, и молекулярная биология. Осмысление знаний и понимание того, что известно на сегодняшний день, дает плацдарм для того, чтобы идти дальше. И в этом отношении как раз систематика играет большую роль. Профессор Дикун, мой учитель на лекциях говорил: вы купили книги и их накопилось много, тогда нужна полочка, чтобы их расставить. А дальше вы расставите книги в зависимости от того, какую цель вы преследуете. Вы можете поставить рядом красивые корешки и это будет доставлять эстетическое удовольствие, а можете расставить по тематике – здесь детективы, здесь – по ботанике, здесь – по грибам. И тогда если вам нужно какую-то книгу, вы ее легко найдете. Вот построения и системы, которые существуют, задаются теми целями исследователей, которые эти системы создают. И существуют системы как искусственные, так и естественные.


Если вы хотите, например, описать биоразнообразие, вы приходите к водоему и хотите узнать, какие там водоросли живут и вам все эти водоросли нужно определить и в какую-то систему свести. Для этого существуют такие искусственные системы, в основе которых лежат чисто морфологические признаки, которые легко давали вам возможность определить и опознать тот организм, который есть. И такие искусственные системы есть. Но в биологии, как и в любой в науке, система стремится к естественности и она должна не только многообразие механизмов отражать, но и должна попытаться отражать связи между этими родственными организмами. К такой системе стремятся естественные научные системы. Естественную систему для всех организмов на сегодняшний день пока невозможно создать, потому что не обо всех организмах известен жизненный цикл и строение.


Сегодня естественная система – это дерево, где есть основание и расходящиеся ветви. Есть компьютерные программы, которые позволяют создавать деревья и по длине ветвей, по углу расхождения можно судить о родственных отношениях.


– Сейчас главным критерием для классификации живых организмов считаются именно родственные связи?


– Главное это попытки создать такие естественные, филогенетические системы, в которых было бы отражено, кто от кого произошел. Но в чем трудность, которая возникает? Все понятно с этими тремя большими доменами, как бы их сейчас никто не опротестовывает. Есть домен бактерий, есть археи и есть эукариоты. Об археях известно, что это единственные метаногенные организмы, что у них есть отличия от бактериальных РНК, что у них в клеточной стенке нет муреина, что характерно для бактериальных. Муреин – вещество, которое входит в состав клетки бактерий, именно на него действуют пенициллиновые антибиотики, подавляя синтез муреина, за счет этого подавляют развитие возбудителей ряда бактериальных заболеваний. У архей, несмотря на то, что они прокариоты, этих свойств нет, и у них есть нейтроны, те участки, которые кодируют аминокислоты, что характерно для эукариот. Оказалось, что археи, не имеющие ядра по морфологии клетки ближе всего к бактериям, но при построении филогенетических схем они ближе стоят к эукариотам, чем к бактериям.


– То есть ученые решили, что различия на генетическом уровне, тонкие биохимические различия важнее, чем внешние морфологические признаки. Потому что в микроскоп бактерии и археи не отличить.


– Не отличишь абсолютно. Так же могут быть и жгутики, и клетки. Единственное, что кубическая форма характерна только для архей и не характерна для бактерий. Это единственное. То же самое произошло с водорослями. Водоросли, если мы перейдем к группе эукариотных организмов, на сегодняшний день подверглись такой самой радикальной перестройке и переосознанию. Потому что если взять середину прошлого века, водоросли считались низшими растениями, как это было и при Линнее. На самом деле водоросли не представляют собой таксономическую категорию - это разнородная группа организмов, которые находятся на сегодняшний день в четырех из пяти империй эукариот.


Империи эукариот можно разделить на империи, которые различаются такими устойчивыми признаками, как жгутики у сперматозоидов, строение митохондрий, бороздка на клетке и другие признаки. Уточнение и генетических признаков, и морфологических продолжается.


XS
SM
MD
LG