Как работает адронный коллайдер

Ирина Лагунина: 30 марта в Швейцарии в Европейском центре ядерных исследований (CERN) успешно прошли эксперименты на Большой адронном коллайдере - самые мощные из всех когда-либо проводившиеся до этого. За ходом испытаний по всему миру следили в режиме реального времени десятки научных групп, сотрудничающих с CERN. Одна из таких групп находится в Объединенном институте ядерной физики в Дубне. Там побывала наш научный обозреватель Ольга Орлова.

Ольга Орлова: Объем информации при проведении экспериментов на Большом адронном коллайдере столь огромен, что для его обработки вместо интернета понадобилось создавать систему нового поколения Grid. Она обладает большой пропускной способностью и повышенной надежностью. Научные группы по всему миру получают по сети Grid сведения о том, что происходит в CERN. Один из таких центров анализа данных находится в Объединенном институте ядерной физики (ОИЯИ) в Дубне. Там на рабочий семинар собрались специалисты, чтобы понаблюдать за тем, как будет проходить столкновение пучков частиц в ускорителе. Тут же на семинаре организовали сеанс видеосвязи с так называемыми контрольными комнатами CERN. Оттуда ведутся круглосуточные наблюдения за основными четырьмя детекторами, через которые прогоняют пучки протонов. Кроме того, в работе видеосеминара участвовали группы из Института ядерных исследований (ИЯИ) Троицка и Петербургского института ядерной физики (ПИЯФ) Гатчины. Поэтому журналисты шутили: средства связи современные, а позывные те же, что в советских фильмах про гражданскую войну. "Гатчина, Гатчина. Вы нас слышите, Гатчина?". Правда, в отличие от старых фильмов, связь во время работы семинара не подвела ни разу.

Несколько часов собравшиеся по разные стороны экранов напряженно следили за тем, как нарастает энергия, с которой должно произойти столкновение. Предельный уровень, на который рассчитан Большой адронный коллайдер 14 ТэВ. Но достигнуть его, по прогнозам ученых, можно будет года через два, а пока необходимо испытать коллайдер хотя бы на половинную мощность - 7 ТэВ. На сегодняшний день и такой уровень недостижим ни на одном ускорителе.

Проблемы с коллайдером в последний год приучили сотрудников в CERN к осторожности. Поэтому, выходя на связь с Дубной, они просили собеседников шампанское держать в холодильнике, но ни в коем случае заранее не пить. Около 14 часов по московскому времени произошло столкновение двух пучков мощностью по 3,5 ТэВ каждый (в сумме 7). После этого все наблюдавшие за экспериментом, как в контрольных комнатах CERN, так ив российских центрах замерли в ожидании результата. Ждали, пока компьютер прояснит, что именно произошло в коллайдере. Через несколько минут на мониторах появилась модель изображения столкновения. Все присутствующие бросились к экранам, считывая и комментируя картинку соударения. Мне помог ее прочитать сотрудник научно-исследовательского института ядерной физики МГУ Сергей Петрушанко, он сам участник эксперимента CMS на LHC.

Сергей Петрушанко: В любом случае на мониторах есть подтверждение, что какое-то соударение происшедшее, поскольку по пучкам есть информация, какая энергия. По сути это первое столкновение при такой энергии, которую когда-либо пытались измерить.

Ольга Орлова: Даже эти первые соударения оказались чрезвычайно богаты информацией. Детекторы коллайдера зафиксировали полмиллиона событий более трех часов стабильных сталкивающихся пучков.

Сергей Петрушанко: Конечно, те соударения, которые были проведены в прошлом году в ноябре, тоже проходили при новом уровне энергии. Но там было не очень большое количество столкновений. Хотя даже те столкновения нам дали важные данные по характеристике этой энергии. Это позволяет строить и проверять модели, выдвигать какие-то предположения. В прошлом году статистика была очень недостаточная. Энергия была не сильно выше того, что достигалось ранее. Сейчас на наших глазах был достигнут существенно сильный прорыв в большую энергию. Первый же небольшой набор этих событий даст нам информацию о том, что происходит на этом диапазоне энергии. То есть какие-то вещи мы можем сказать сейчас: количество зародившихся частиц, среднее значение частиц, энергию, поперечный импульс, другие характеристики. Дальше пойдет поиск обычных объектов в этих соударениях. Такие, например, вещи как струя, когда много частиц летит в одном направлении. Это свидетельствует о том, что родился и разлетелся в разные стороны кварк. Конечно, хочется найти бозон Хиггса и какую-то другую экзотику, но уже сейчас после этих экспериментов мы имеем новые характеристики, новые значения, новые энергии.

Ольга Орлова: Всех волнует вопрос: а что будут делать физики, если в результате экспериментов на коллайдере будут получены подтверждения стандартной физической модели, но кроме этого ничего нового не обнаружат. Как быть, если ожидаемый бозон Хиггса, первоначальную частицу, отвечающую за массу вещества, все-таки не найдут?

Сергей Петрушанко: Действительно, высказывались предположения, что и предельная энергия LHC в 14 ТэВ нам ничего не даст. Но и это не страшно. Ситуация простая: если мы открываем Хиггса - это замечательно, все кирпичики сложились в одну модель. Если мы бозон Хиггса не открываем, это тоже указание на то, что мы не все понимаем. Как только мы не открываем Хиггса, мы должны искать другие характеристики, возможно найдем что-то абсолютно новое. Если мы не найдем что-то новое, придется полностью пересмотреть, что у нас сейчас есть. Естественно, стандартная модель не пострадает, это полностью не отменит существующую теорию. Но это заставит нас думать о том, как надо расширять стандартную модель, вносить в нее что-то новое.

Ольга Орлова: Но это будет потом. А пока успешно взята планка в половину мощности коллайдера. Все, кто следил за экспериментом из разных точек, бросились друг друга поздравлять с общей победой. Ведь помимо уникальной научной программы Большой адронный коллайдер еще называют важнейшим социальным экспериментом.

Когда-то в начале 20 века в мире насчитывалось всего около одной тысячи физиков из всех областей, сегодня только в работе Большого адронного коллайдера принимает участие несколько тысяч физиков. Их деятельность четко координирована. Одним из тех, кто закладывал принципы системы управления на Большом адронном коллайдере, был доктор физико-математических наук, работающий в эксперименте CMS Игорь Голутвин. По его словам, он и не мыслил иного научного менеджмента в подобном проекте.

Игорь Голутвин: Это нормальная система, все эксперименты управляются именно таким образом. Избирается демократическим путем совет и председатель совета. В совет обычно входит один человек от каждого института-участника. Совет - это орган, который надзирает за тем, чтобы все делалось правильно, чтобы не нарушалась демократия. Совет так же избирает руководителя эксперимента. Например, сейчас в CMS принято, чтобы руководитель избирался только на два года и один раз в жизни. Но на самом деле это достаточно централизованное управление, потому что под руководителем находится исполнительный комитет, в него входят человек 10-15 туда из руководителей различных систем. Такой компактный орган получается, очень дееспособный. Это компромисс между тем, чтобы чересчур не было разбродов и чтобы не получалось некоей централизации, которая обычно приводит к застою.

Ольга Орлова: В России, кажется, нет аналогов такому виду управления научными проектам?

Игорь Голутвин: В России найти аналог трудно, потому что масштабы другие. Ведь речь идет о настоящей международной науке. Проект такого уровня, масштаба так и должен управляться. Я не представляю другой системы.

Ольга Орлова: После того как компьютеры подтвердили успешное столкновение пучков протонов, выступали руководители каждого из четырех главных экспериментов - ALICE, CMS, ATLAS, LHCb. Последним руководит сын Игоря Голутвина Андрей. Однако работа в параллельных экспериментах, по словам отца, не порождает между родственниками соперничества.

Игорь Голутвин: У нас нет конкуренции. С самого начала договорились: конкуренция должна быть со всеми, но не должно быть мышиной возни. Как это достигается, трудно объяснить, потому что это зависит от интеллекта и уровня людей, которые в этом участвуют. Все понимают, что мы делаем одно дело.

Ольга Орлова: И сегодня это дело - обработка и анализ данных, которые уже были получены на ускорителе. Руководитель эксперимента CMS Мишель Делла Негра оценил ситуацию так: "Ясно, что мы не обнаружим бозон Хиггса сразу после столкновения. Нам понадобится несколько лет работы установки при высокой светимости и высоких энергиях, чтобы открыть эту частицу. Но если природа будет к нам благосклонна, если нам повезет, мы сможем еще до бозона Хиггса открыть новое тяжелое состояние суперсимметричных частиц, и это будет для нас сюрпризом".

Итак, пока коллайдер работает на половину мощности, природа оказалась благосклонна. Теперь слово за учеными. Удастся ли открыть что-то новое на этом этапе - мы узнаем вскоре из их публикаций.